Statistical Fuzzy Convergence

نویسندگان

  • Mark Burgin
  • Oktay Duman
چکیده

The goal of this work is the further development of neoclassical analysis, which extends the scope and results of the classical mathematical analysis by applying fuzzy logic to conventional mathematical objects, such as functions, sequences, and series. This allows us to reflect and model vagueness and uncertainty of our knowledge, which results from imprecision of measurement and inaccuracy of computation. Basing on the theory of fuzzy limits, we develop the structure of statistical fuzzy convergence and study its properties. Relations between statistical fuzzy convergence and fuzzy convergence are considered in the First Subsequence Theorem and the First Reduction Theorem. Algebraic structures of statistical fuzzy limits are described in the Linearity Theorem. Topological structures of statistical fuzzy limits are described in the Limit Set Theorem and Limit Fuzzy Set theorems. Relations between statistical convergence, statistical fuzzy convergence, ergodic systems, fuzzy convergence and convergence of statistical characteristics, such as the mean (average), and standard deviation, are studied in Secs. 2 and 4. Introduced constructions and obtained results open new directions for further research that are considered in the Conclusion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical Convergence and Strong $p-$Ces`{a}ro Summability of Order $beta$ in Sequences of Fuzzy Numbers

In this study we introduce the concepts of statistical convergence of order$beta$ and strong $p-$Ces`{a}ro summability of order $beta$ for sequencesof fuzzy numbers. Also, we give some relations between the statisticalconvergence of order $beta$ and strong $p-$Ces`{a}ro summability of order$beta$ and construct some interesting examples.

متن کامل

$(A)_ {Delta}$ - double Sequence Spaces of fuzzy numbers via Orlicz Function

The aim of this paper is to introduce and study a new concept ofstrong double $(A)_ {Delta}$-convergent sequence offuzzy numbers with respect to an Orlicz function and also someproperties of the resulting sequence spaces of fuzzy   numbers areexamined. In addition, we define the double$(A,Delta)$-statistical convergence of fuzzy  numbers andestablish some connections between the spaces of stron...

متن کامل

Lacunary Invariant Statistical Convergence of Fuzzy Numbers

In this paper, we introduce the concepts of invariant convergence, lacunary invariant statistical convergence of sequences of fuzzy numbers and lacunary strongly invariant convergence of sequences of fuzzy numbers. We give some relations related to these concepts.

متن کامل

STATISTICAL CONVERGENCE AND STRONG p−CESÀRO SUMMABILITY OF ORDER β IN SEQUENCES OF FUZZY NUMBERS

In this study we introduce the concepts of statistical convergence of order β and strong p−Cesàro summability of order β for sequences of fuzzy numbers. Also, we give some relations between the statistical convergence of order β and strong p−Cesàro summability of order β and construct some interesting examples.

متن کامل

Almost lacunary statistical and strongly almost lacunary convergence of sequences of fuzzy numbers

The purpose of this paper is to introduce the concepts of almost lacunary statistical convergence and strongly almost lacunary convergence of sequences of fuzzy numbers. We give some relations related to these concepts. We establish some connections between strongly almost lacunary convergence and almost lacunary statistical convergence of sequences of fuzzy numbers. It is also shown that if a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2008